Copy-on-Write and SSDs – A better match than other file systems?

We have been taught that file systems are like folders, sub-folders and eventually files. The criteria in designing file systems is to ensure that there are few key features

  • Ease of storing, retrieving and organizing files (sounds like a fridge, doesn’t it?)
  • Simple naming convention for files
  • Performance in storing and retrieving files – hence our write and read I/Os
  • Resilience in restoring full or part of a file when there are discrepancies

In file systems performance design, one of the most important factors is locality. By locality, I mean that data blocks of a particular file should be as nearby as possible. Hence, in most file systems designs originated from the Berkeley Fast File System (BFFS), requires the file system to seek the data block to be modified to ensure locality, i.e. you try not to split up the contiguity of the data blocks. The seek time to find the require data block takes time, but you are compensate with faster reads because the read-ahead feature allows you to read extra blocks ahead in anticipation that the data blocks are related.

In Copy-on-Write file systems (also known as shadow-paging file systems), the seek portion is usually not present because the new modified block is written somewhere else, not the present location of the original block. This is the foundation of Copy-on-Write file systems such as NetApp’s WAFL and Oracle Solaris ZFS. Because the new data blocks are written somewhere else, the storing (write operation) portion is faster. It eliminated the seek time and it also skipped the read-modify-write action to the original location of the data block. Therefore, write is likely to be faster.

However, the read portion will be slower because if you want to read a file, the file system has to go around looking for the data blocks because it lacks the locality. Therefore, as the COW file system ages, it tends to have higher file system fragmentation. I wrote about this in my previous blog. It is a case of ENJOY-FIRST/SUFFER-LATER. I am not writing this to say that COW file systems are bad. Obviously, NetApp and Oracle have done enough homework to make the file systems one of the better storage file systems in the market.

So, that’s Copy-on-Write file systems. But what about SSDs?

Solid State Drives (SSDs) will make enemies with file systems that tend prefer locality. Remember that some file systems prefer its data blocks to be contiguous? Well, SSDs employ “wear-leveling” and required writes to be spread out as much as possible across the SSDs device to prolong the life of the SSD device to reduce “wear-and-tear”. That’s not good news because SSDs just told the file systems, “I don’t like locality and I will spread out the data blocks“.

NAND Flash SSDs (the common ones we find in the market and not DRAM-based SSDs) are funny creatures. When you write to SSDs, you must ERASE first, WRITE AGAIN to the SSDs. This is the part that is creating the wear-and tear of the device. When I mean ERASE first, WRITE AGAIN, I describe it below

  • Writing 1 –> 0 (OK, no problem)
  • Writing 0 –> 1 (not OK, because NAND Flash can’t do that)

So, what does the SSD do? It ERASES everything, writing the entire data blocks on the device to 1s, and then converting some of them to 0s. Crazy, isn’t it? The firmware in the SSDs controller will also spread out the erase-and-then write operations across the entire SSD device to avoid concentrating the operations on a small location or dataset. This is the “wear-leveling” we often hear about.

Since SSDs shun locality and avoid the data blocks to be nearby, and Copy-on-Write file systems are already doing this because its nature to write new data blocks somewhere else, the combination of both COW file system and SSDs seems like a very good fit. It even looks symbiotic because it is a case of “I help you; and you help me“.

From this perspective, the benefits of COW file systems and SSDs extends beyond resiliency of the SSD device but also in performance. Since the data blocks are spread out at different locations in the SSD device, the effect of parallelism will inadvertently help with COW’s performance. Make sense, doesn’t it?

I have not learned about other file systems and how they behave with SSDs, but it is pretty clear that Copy-on-Write file systems works well with Solid State Devices. Have a good week ahead :-)!


About cfheoh

I am a technology blogger with 20 years of IT experience. I write heavily on technologies related to storage networking and data management because that is my area of interest and expertise. I introduce technologies with the objectives to get readers to *know the facts*, and use that knowledge to cut through the marketing hypes, FUD (fear, uncertainty and doubt) and other fancy stuff. Only then, there will be progress. I am involved in SNIA (Storage Networking Industry Association) and presently the Chairman of SNIA Malaysia. My day job is to run 2 companies - Storage Networking Academy and ZedFS Systems. Storage Networking Academy provides open-technology courses in storage networking (foundation to advanced) as well as Cloud Computing. We strives to ensure vendor-neutrality as much as we can in our offerings. At ZedFS Systems, we offer both storage infrastructure and software solution called Zed OpenStorage. We developed Zed OpenStorage based on the Solaris kernel, ZFS file system and DTrace storage analytics.

Posted on August 22, 2011, in Disks, Filesystems, RAID and tagged , , , , , , , . Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: