All SSDs storage array? There’s more than meets the eye at Pure Storage

Wow, after an entire week off with the holidays, I am back and excited about the many happenings in the storage world.

One of the more prominent news was the announcement of Pure Storage launching its enterprise storage array build entirely with flash-based solid state drives. In addition to that, there were other start-ups who were also offering SSDs storage arrays. The likes of Nimbus Data, Avere, Violin Memory Systems all made the news as well as the grand daddy of solid state storage arrays, Texas Memory Systems.

The first thing that came to my mind was, “Wow, this is great because this will push down the $/GB of SSDs closer to the range of $/GB for spinning disks”. But then skepticism crept in and I thought, “Do we really need an entire enterprise storage array of SSDs? That’s going to cost the world”.

At the same time, we in the storage industry knows that no piece of data are alike. They can be large, small, random, sequential, accessed frequently or infrequently and so on. It is obviously better to tier the storage, using SSDs for Tier 0, 10K/15K RPM spinning HDDs for Tier 1, SATA for Tier 2 and perhaps tape for the archive tier. I was already tempted to write my pessimism on Pure Storage when something interesting caught my attention.

Besides the usual marketing jive of sub-milliseconds, predictable latency, green messaging, global inline deduplication and compression and built-in data integrity into its Purity Operating Environment (POE), I was very surprised to find the team behind Pure Storage. Here’s their line-up

  • Scott Dietzen, CEO – starting from principal technologist of Transarc (sold to IBM), principal architect of Web Logic (sold to BEA Systems), CTO of BEA (sold to Oracle), CTO of Zimbra (sold to Yahoo! and then to VMware)
  • John “Coz” Colgrove, Founder & CTO – Veritas Fellow, CTO of Symantec Data Management group, principal architect of Veritas Volume Manager (VxVM) and Veritas File System (VxFS) and holder of 70 patents
  • John Hayes, Founder & Chief Architect – formerly of  Yahoo! office of Chief Technologist
  • Bob Wood, VP of Engineering – Formerly NetApp’s VP of File System Engineering,
  • Michael Cornwell, Director of Technology & Strategy – formerly the lead technologist of Sun Microsystems’ Sun Storage F5100 Flash Array and also Quantum’s storage architect for their storage telemetry, VTL and DXi solutions
  • Ko Yamamoto, VP of System Engineering – previously NetApp’s director of platform engineering, Quantum DXi director of hardware engineering, and also key contributor to 4-generations of Tandem NonStop technology

In addition to that, there are 3 key individual investors worth mentioning

  • Diane Green – Founder of VMware and former CEO
  • Dr. Mendel Rosenblum – Founder and former Chief Scientist and creator of VMware
  • Frank Slootman – formerly CEO of Data Domain (acquired by EMC)

All these industry big guns are flocking to Pure Storage for a reason and it looks to me that Pure Storage ain’t your ordinary, run-of-the-mill enterprise storage company. There’s definitely more than meet the eye.

On top of the enterprise storage array platform is Pure Storage’s Purity Operating Environment (POE). POE focuses on 3 key storage services which are

  • High Performance Data Reduction
  • Mission Critical Reliability
  • Predictable Sub-millisecond Performance

After going through the deep-dive videos by Pure Storage’s CTO, John Colgrove, they are very much banking the success of their solution around SSDs. Everything that they have done is based on SSDs.  For example, in order to achieve a larger capacity as well as a much cheaper $/GB, the data reduction techniques in global deduplication, high compression and also fine grained thin provision of 512 bytes are used. By trading off IOPS (which SSDs have plenty since they are several times faster than conventional spinning disks), a larger usable capacity is achieved.

In their RAID 3D, they also incorporated several high reliability techniques and data integrity algorithm that are specifically for SSDs. One note that was mentioned was that traditional RAID and especially the parity-based RAID levels were designed in the beginning to protect against an entire device failure. However, in SSDs, the failure does not necessarily occur in the entire device. Because of the way SSDs are built, the failure hotspots tend to happen at the much more granular bit level of the SSDs. The erase-then-write techniques that are inherent in NAND Flash SSDs causes the bit error rate (BER) of the SSD device to go up as the device ages. Therefore, it is more likely to get a read/write error from within the SSDs memory itself rather than having the entire SSD device failing. Pure Storage RAID 3D is meant to address such occurrences of bit errors.

I spoke a bit of storage tiering earlier in this article because every corporation employs storage tiering to be financially responsible. However, John Colgrove’s argument was why tier the storage when there’s plentiful of IOPS and the $/GB is comparable to spinning disks. That is true is when the $/GB of SSDs can match the $/GB of spinning disks. Factors we must also taken into account is the rack-space savings using the smaller profile disks of SSDs, the power-savings costs of SSDs versus conventional HDD-based enterprise storage arrays. In its entirety, there are strong indications that the $/GB of SSD-based systems to match or perhaps lower the $/GB of HDD-based systems. And since the IOPS requirement levels of present-day applications have not demanded super-high IOPS and multi-core processing is cheap, there’s plenty of head-room for Pure Storage and other similar enterprise storage array companies to grow.

The tides are changing for the storage industry and it is good to see a start-up like Pure Storage boldly coming forth to announce their backing for SSDs. It’s good for the consumer and good for the industry. But more importantly, they are driving innovations to rethink of how we build storage arrays. I am looking forward to more things to come.

Advertisements

About cfheoh

I am a technology blogger with 20 years of IT experience. I write heavily on technologies related to storage networking and data management because that is my area of interest and expertise. I introduce technologies with the objectives to get readers to *know the facts*, and use that knowledge to cut through the marketing hypes, FUD (fear, uncertainty and doubt) and other fancy stuff. Only then, there will be progress. I am involved in SNIA (Storage Networking Industry Association) and presently the Chairman of SNIA Malaysia. My day job is to run 2 companies - Storage Networking Academy and ZedFS Systems. Storage Networking Academy provides open-technology courses in storage networking (foundation to advanced) as well as Cloud Computing. We strives to ensure vendor-neutrality as much as we can in our offerings. At ZedFS Systems, we offer both storage infrastructure and software solution called Zed OpenStorage. We developed Zed OpenStorage based on the Solaris kernel, ZFS file system and DTrace storage analytics.

Posted on September 3, 2011, in Disks, RAID, Storage Tiering and tagged , , , , , , , , , , . Bookmark the permalink. 2 Comments.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: