Category Archives: Solid State Devices

Solid?

The next all-Flash product in my review list is SolidFire. Immediately, the niche that SolidFire is trying to carve out is obvious. It’s not for regular commercial customers. It is meant for Cloud Service Providers, because the features and the technology that they have innovated are quite cloud-intended.

Are they solid (pun intended)? Well, if they have managed to secure a Series B funding of USD$25 million (total of USD$37 million overall) from VCs such as NEA and Valhalla, and also angel investors such as Frank Slootman (ex-Data Domain CEO) and Greg Papadopoulus(ex-Sun Microsystems CTO), then obviously there is something more than meets the eye.

The one thing I got while looking up SolidFire is there is probably a lot of technology and innovation behind their  Nodes and their Element OS. They hold their cards very, very close to their chest, and I couldn’t not get much good technology related information from their website or in Google. But here’s a look of how the SolidFire is like:

The SolidFire only has one product model, and that is the 1U SF3010. The SF3010 has 10 x 2.5″ 300GB SSDs giving it a raw total of 3TB per 1U. The minimum configuration is 3 nodes, and it scales to 100 nodes. The reason for starting with 3 nodes is of course, for redundancy. Each SF3010 node has 8GB NVRAM and 72GB RAM and sports 2 x 10GbE ports for iSCSI connectivity, especially when the core engineering talents were from LeftHand Networks. LeftHand Networks product is now HP P4000. There is no Fibre Channel or NAS front end to the applications.

Each node runs 2 x Intel Xeon 2.4GHz 6-core CPUs. The 1U height is important to the cloud provider, as the price of floor space is an important consideration.

Aside from the SF3010 storage nodes, the other important ingredient is their SolidFire Element OS.

Cloud storage needs to be available. The SolidFire Helix Self-Healing data protection is a feature that is capable of handling multiple concurrent failures across all levels of their storage. Data blocks are replicated randomly but intelligently across all storage nodes to ensure that the failure or disruption of access to a particular data block is circumvented with another copy of the data block somewhere else within the cluster. The idea is not new, but effective because solutions such as EMC Centera and IBM XIV employ this idea in their data availability. But still, the ability for self-healing ensures a very highly available storage where data is always available.

To address the efficiency of storage, having 3TB raw in the SF3010 is definitely not sufficient. Therefore, the Element OS always have thin provision, real-time compression and in-line deduplication turned on. These features cannot be turned off and operate at a fine-grained 4K blocks. Also important is the intelligence to reclaim of zeroed blocks, no-reservation,  and no data movement in these innovations. This means that there will be no I/O impact, as claimed by SolidFire.

But the one feature that differentiates SolidFire when targeting storage for Cloud Service Providers is their guaranteed volume level Quality of Service (QOS). This is important and SolidFire has positioned their QOS settings into an advantage. As best practice, Cloud Service Providers should always leverage the QOS functionality to improve their storage utilization

The QOS has:

  • Minimum IOPS – Lower IOPS means lower performance priority (makes good sense)
  • Maximum IOPS
  • Burst IOPS – for those performance spikes moments
  • Maximum and Burst MB/sec
The combination of QOS and storage capacity efficiency gives SolidFire the edge when cloud providers can scale both performance and capacity in a more balanced manner, something that is not so simple with traditional storage vendors that relies on lots of spindles to achieve IOPS performance sacrificing capacity in the process. But then again, with SSDs, the IOPS are plenty (for now). SolidFire does not boast performance numbers of millions of IOPS or having throughput into the tens of Gigabytes like Violin, Virident or Kaminario, but what they want to be recognized as the cloud storage as it should be in a cloud service provider environment.
SolidFire calls this Performance Virtualization. Just as we would get to carve our storage volumes from a capacity pool, SolidFire allows different performance profiles to be carved out from the performance pool. This gives SolidFire the ability to mix storage capacity and storage performance in a seemingly independent manner, customizing the type of storage bundling required of cloud storage.
In fact, SolidFire only claims 50,000 IOPS per storage node (including the IOPS means for replicating data blocks). Together with their native multi-tenancy capability, the 50,000 or so IOPS will align well with many virtualized applications, rather than focusing on a 10x performance improvement on a single applications. Their approach is more about a more balanced and spread-out I/O architecture for cloud service providers and the applications that they service.
Their management is also targeted to the cloud. It has a REST API that integrates easily into OpenStack, Citrix CloudStack and VMware vCloud Director. This seamless and easy integration, is more relevant because the CSPs already have their own management tools. That is why SolidFire API is a REST-ready, integration ready to do just that.
The power of the SolidFire API is probably overlooked by storage professionals trained in the traditional manner. But what SolidFire API has done is to provide the full (I mean FULL) capability of the management and provisioning of the SolidFire storage. Fronting the API with REST means that it is real easy to integrate with existing CSP management interface.

Together with the Storage Nodes and the Element OS, the whole package is aimed towards a more significant storage platform for Cloud Service Providers(CSPs). Storage has always been a tricky component in Cloud Computing (despite what all the storage vendors might claim), but SolidFire touts that their solution focuses on what matters most for CSPs.

CSPs would want to maximize their investment without losing their edge in the cloud offerings to their customers. SolidFire lists their benefits in these 3 areas:

  • Performance
  • Efficiency
  • Management

The edge in cloud storage is definitely solid for SolidFire. Their ability to leverage on their position and steering away from other all-Flash vendors’ battlezone could all make sense, as they aim to gain market share in the Cloud Service Provider space. I only wish they can share more about their technology online.

Fortunately, I found a video by SolidFire’s CEO, Dave Wright which gives a great insight about SolidFire’s technology. Have a look (it’s almost 2 hour long):

[2 hours later]: Phew, I just finished the video above and the technology is solid. Just to summarize,

  • No RAID (which is a Godsend for service providers)
  • Aiming for USD5.00 or less per Gigabyte (a good number!)
  • General availability in Q1 2012

Lots of confidence about the superiority of their technology, as portrayed by their CEO, Dave Wright.

Solid? Yes, Solid!

Kaminario who?

The name “Kaminario” intrigues me and I don’t know the meaning of it. But there is a nice roll off the tongue until you say it a few times, fast and your tongue get twisted in a jiffy.

Kaminario is one of the few prominent startups in the all-flash storage space, getting USD$15 million Series C funding from big gun VCs of Sequoia and Globespan Capital Partners in 2011. That brought their total to USD$34 million, and also bringing them the attention of storage market.

I am beginning my research into their technology and their product line, the K2 and see why are they special. I am looking for an angle that differentiates them and how they position themselves in the market and why they deserved Series C funding.

Kaminario was founded in 2008, with their headquarters in Boston Massachusetts. They have a strong R&D facility in Israel and looking at their management lineup, they are headed by several personalities with an Israel background.

All this shouldn’t be a problem to many except the fact that Malaysia don’t recognize Israel diplomatically and some companies here, especially the government, might have an issue with the Israeli link. But then again, we have a lot of hypocrites in Malaysian politics and I am not going to there in my blog. It’s a waste of my time.

The key technology is Kaminario’s K2 SPEAR Architecture and it defines a fundamental method to store and retrieve performance-sensitive data. Yes, since this is an all-Flash storage solution, performance numbers, speeds and feeds are the “weapons” to influence prospects with high performance requirements. Kaminario touts their storage solution scales up to 1.5 million IOPS and 16GB/sec throughput and indeed they are fantastic numbers when you compare them with the conventional HDDs based storage platforms. But nowadays, if you are in the all-Flash game, everyone else is touting similar performance numbers as well. So, it is no biggie.

The secret sauce to the Kaminario technology is of course, its architecture – SPEAR. SPEAR stands for Scale-out Performance Storage Architecture. While Kaminario states that their hardware is pretty much off-the-shelf, open industry standard, somehow under the covers, the SPEAR architecture could have incorporate some special, proprietary design in its hardware to maximize the SPEAR technology. Hence, I believe there is a reason why Kaminario chose a blade-based system in the enclosures of its rack. Here’s a look at their hardware offering:

The idea using blades is a good idea because blades offers integrated wiring, consolidation, simple plug-and-play, ease-of-support, N+1 availability and so on. But this will also can put Kaminario in a position of all-blades or nothing. This is something some customers in Malaysia might have to get used to because many would prefer their racks. I could be wrong and let’s hope I am.

Each enclosure houses 16 blades, with N+1 availability. As I am going through Kaminario’s architecture, the word availability is becoming louder, and this could be something Kaminario is differentiating from the rest. Yes, Kaminario has the performance numbers, but Kaminario is also has a high-available (are we talking 6 nines?) architecture inherent within SPEAR. Of course, I have not done enough to compare Kaminario with the rest yet, but right now, availability isn’t something that most all-Flash startups trumpet loudly. I could be wrong but the message will become clearer when I go through my list of all-Flash – SolidFire, PureStorage, Virident, Violin Memory and Texas Memory Systems.

Each of the blades can be either an ioDirector or a DataNode, and they are interconnected internally with 1/10 Gigabit ports, with at least one blade acting as a standby blade to the rest in a logical group of production blades. The 10Gigabit connection are used for “data passing” between the blades for purpose of load-balancing as well as spreading out the availability function for the data. The Gigabit connection is used for management reasons.

In addition to that there is also a Fibre Channel piece that is fronting the K2 to the hosts in the SAN. Yes, this is an FC-SAN storage solution but since there was no mention of iSCSI, the IP-SAN capability is likely not there (yet).

 Here’s a look at the Kaminario SPEAR architecture:

The 2 key components are the ioDirector and the DataNode. A blade can either have a dedicated personality (either ioDirector or DataNode) or it can share both personalities in one blade. Minimum configuration is 2-blades of 2 ioDirectors for redundancy reasons.

The ioDirector is the front-facing piece. It presents to the SAN the K2 block-based LUNs and has the intelligence to dynamically load balance both Reads and Writes and also optimizing its resource utilization. The DataNode plays the role of fetching, storing, and backup and is pretty much the back-end worker.

With this description, there are 2 layers in the SPEAR architecture. And interestingly, while I mentioned that Kaminario is an all-Flash storage player, it actually has HDDs as well. The HDDs do not participate in the primary data serving and serve as containers for backup for the primary data in the SSDs, which can be MLC-Flash or DRAMs. The back-end backup layer comprising of HDDs is what I said earlier about availability. Kaminario is adding data availability as part of its differentiating features.

That’s the hardware layout of SPEAR, but the more important piece is its software, the SPEAR OS. It has 3 patent-pending  capabilities, with not so cool names (which are trademarked).

  1. Automated Data Distribution
  2. Intelligent Parallel I/O Processing
  3. Self Healing Data Availability

The Automated Data Distribution of the SPEAR OS acts as a balancer. It balances the data by dynamically and randomly (in an random equilibrium fashion, I think) to spread out the data over the storage capacity for efficiency, SSD longevity and of course, optimized performance balancing.

The second capability is Intelligent Parallel I/O Processing. The K2 architecture is essentially a storage grid. The internal 10Gigabit interconnects basically ties all nodes (ioDirectors and DataNodes) together in a grid-like fashion for the best possible intra-node communications. The parallelization of the I/O Read and Write requests spreads across the nodes in the storage grid, giving the best average response and service times.

Last but not least is the Self Healing Data Availability, a capability to dynamically reconfigure accessibility to the data in the event of node failure(s). Kaminario claims no single point of failure, which is something I am very interested to know if given a chance to assess the storage a bit deeper. So far, that’s the information I am able to get to.

The Kaminario K2 product line comes in 3 model – D, F, and H.

D is for DRAM only and F is for Flash MLC only. The H model is a combination of both Flash and DRAM SSDs. Here how Kaminario addresses each of the 3 models:

Kaminario is one of the early all-Flash storage systems that has gained recognition in 2011. They have been named a finalist in both Storage Magazine and SearchStorage Storage Product of the Year competitions for 2011. This not only endorses a brand new market for solid state storage systems but validates an entirely new category in the storage networking arena.

Kaminario can be one to watch in 2012 as with others that I plan to review in the coming weeks. The battle for Flash racks is coming!

BTW, Dell is a reseller of Kaminario.